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slower than that for CZ silicon. This is explicable by 
the fact that the concentration of interstitial oxygen 
in as-grown MCZ silicons is smaller than that in. 
as-grown CZ silicons. For isochronal annealing, the 
precipitate density in MCZ silicon increases at first 
with temperature then decreases above 923 K, while 
the tendency towards small density with CZ silicon 
occurs at a relatively lower temperature, since preci- 
pitates with larger size than the critical radias grow 
up more rapidly in CZ silicon than those in MCZ 
silicon under the same thermal conditions. Mai et al. 
(1990) have reported that thermal donor generation 
in MCZ silicon is much lower than in CZ silicon. All 
these factors confirm the above arguments, i.e. MCZ 
silicon is more thermally stable than CZ silicon. 
Furthermore, this confirms the observation that 
magnetic fields can effectively control the oxygen 
concentration. Since the oxygen concentration in 
MCZ silicon is smaller than that in CZ silicon, they 
have different thermal behaviours. 

ivity of the interstitial oxygen and the critical radius 
of precipitates being larger at higher temperature. 
Comparison of the results for MCZ silicon with 
those for CZ silicon shows that MCZ silicon crystals 
are more thermally stable than CZ silicons. The 
thermal donor generation is also weaker in MCZ 
silicons than in CZ silicons. This suggests that mag- 
netic fields can control the oxygen concentration 
effectively and can provide high-quality silicon crys- 
tals. Moreover, the MCZ and the CZ silicons have 
different thermal behaviours. The method described 
here provides a powerful technique for detecting 
microdefects of nanometre size and random distribu- 
tion. This represents an important extension of X-ray 
topography to the field of crystal-defect characteri- 
zation. 

This work was supported by the National Natural 
Science Foundation of China. 

5. Concluding remarks 
We have investigated the thermal behaviour of 
oxygen in silicon by analysing the PendellO'sung 
fringes in X-ray section topographs. For isother- 
mal annealing at 1023 K, the average size of preci- 
pitates increases with the annealing time while the 
precipitate density decreases. The precipitation 
approaches a saturation level after 250 h annealing 
for MCZ silicon. For isochronal annealing for 18 h, 
the size of precipitates increases rapidly with increas- 
ing temperature. This results from both the diffus- 
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Abstract 

It is shown that certain noncentrosymmetric seven- 
beam configurations can be reduced to two-beam 
form. This is exemplified for the space group of 
a-quartz, namely P3~21, with the incident beam 
along [001]. Explicit eigenvalues and eigenvectors are 
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given for this case and it is shown that the two-beam 
form is independent of the imaginary parts of the 
structure amplitudes. The reduction is shown to 
result from five zero projectors rather than con- 
fluence, although confluence is present. An exhaus- 
tive list of the 15 reducible noncentrosymmetric 
space groups is obtained. 
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I. Introduction 

When the probability of scattering more than once 
within the volume of a specimen is negligible, the 
relationship between the object and the scattered 
wavefield assumes the simple form of a Fourier 
transform. Inherent in the simplicity of this result lies 
the difficulty of recovering the phase of the scattered 
wavefield. For the weak interactions experienced by 
photons and neutrons, this single-scattering approxi- 
mation can be extremely effective but for the strong 
interaction associated with electron scattering it has 
very limited validity. Under many circumstances, the 
approximation most likely to have some validity, 
that is the two-beam approximation, is of entirely 
different character. Whereas the kinematical 
approximation involves one term in the Born series, 
the two-beam dynamical approximation involves an 
infinite summation over scattering processes of 
restricted character. Again the solution is of explicit 
type and again it contains no phase information. Its 
range of application is however very great as stand- 
ard texts on electron scattering testify. A brief out- 
line has been given by Cowley & Moodie (1992). 

The conditions under which the form of the two- 
beam solution can have some validity at first sight 
appear to be prohibitively restrictive. In effect, it is 
required that the only significant reflections should 
be those from the same set of Bragg planes. In 
practice, under accelerating voltages of approxi- 
mately 80 kV or more, this condition is never satis- 
fied to an accuracy of better than 2 or 3%: N-beam 
diffraction is, in fact, dominant. However, under a 
range of important practical conditions, the N-beam 
wavefield to good approximation reduces to two- 
beam form. This may happen in one of two ways: as 
a perturbation of strong beams by weak beams 
described by a pseudopotential (Bethe, 1928; 
Gj~nnes, 1962) or by the amalgamation of symmetri- 
cally disposed strong beams (Niehrs, 1961; Blume, 
1966; Fukuhara, 1966; Kogiso & Takahashi, 1977). 
Both reductions have general importance, the latter, 
for instance, in zone-axis critical-voltage effects, in 
the analysis of dislocation contrast and in the inter- 
pretation of certain zone-axis convergent-beam dif- 
fraction patterns. 

Hitherto, it has been accepted that reduction is not 
possible in the absence of a centre of symmetry. The 
reasons for this assumption are not clear to us but 
may derive from one of the techniques used in such 
reductions. This particular method works success- 
fully for the three-beam and by extension to both the 
five- and the seven-beam cases when a centre of 
symmetry is present. However, the three-beam sym- 
metric case is not reducible in the absence of a centre 
of symmetry and the assumption appears to have 
been made that if the three-beam case is not 

reducible then no case of a greater number of beams 
will be. 

In the present communication, it is shown that the 
greater flexibility offered by a seven-beam case is 
sufficient in 15 space groups to overcome the lack 
of a centre of inversion. Amongst the symmetry 
elements, the centre of inversion in many ways plays 
a special role. For instance, in the approximation for 
no back scattering, which concerns us in the present 
paper, the formal correspondence with the non- 
relativistic time-dependent equation of quantum 
mechanics is exact when the appropriate coordinate 
replaces the time coordinate. 

2. Outline of the calculation 

In general, Ffiedels's law is violated for noncentro- 
symmetric systems in which N-beam dynamical scat- 
tering is appreciable. Other symmetries may, 
however, override the lack of a centre of inversion, 
leading in extreme cases to complete reduction of the 
intensity to two-bearn form. A necessary but insuf- 
ficient condition for this is provided by the 
requirement that (g[M2[O)/Vg should be real (Moodie 
& Fehlmann, 1993). 

Reduction to two-beam form is carried out for the 
space group P3~21. Extension to 14 other space 
groups lacking a centre of symmetry and numerical 
results for reducible and irreducible space groups are 
described in § 6. 

For the space group P3121, Mo, the matrix 
describing scattering in the seven-beam approxi- 
mation for radiation incident along the [001] direc- 
tion, is given by 

0 

V 

V 

Mo= V 

V 

V 

V 

V V V V V V 

( V VI* V2 VI V 

V ( V VI V2 VI* 

VI V ( V V1* V2 

V2 VI* V ( V Vl 

V1* V2 V1 V ( V 

V VI V2 VI* V ( 

where V has been written for O'Vlo 0 and ( for rr(, 
o-=(rr/Wa){2/[1 +(1-fl2)'/2]}, f l=v/c and W is the 
accelerating voltage. The labelling of the structure 
amplitudes V(hkO) is given in Fig. 1 and the ordering 
in Table 1. 

For the eigenvectors [J~Og) corresponding to eigen- 
values a j, the final wave function in reciprocal space 
is written as (glU) so that the relation of Fujimoto 
(1959) can be written Ug=Y.jJq~o*J~ogexp(iajz) or 
(glU) = Yj(J~olO)(gV~o) exp (iaiz). 

For the present system, then, with a; an eigen- 
value, <llMglO>/V= ¢+ 2V+ 1/2 +(V, + V,*) = AN + 
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Table 1. Ordering scheme used in calculation and 

g hkl  

0 000 
1 010 
2 100 
3 I'I'0 
4 0T0 
5 TOO 
6 TIO 

AN-1 SO that it is possible that the system is 
reducible. In fact, the eigenvalues can be obtained 
explicitly, the reduction follows, and an application 
of Zassenhaus's theorem can be used to extend the 
treatment to the description of convergent-beam dif- 
fraction patterns. 

3. Determination of the eigenvalues 

The matrix Mo can be decomposed into the sum of 
two commuting matrices, namely 

m l  -- 

B 

- S V V V V V V  

V 0 0 0 0 0 0 

V 0 0 0 0 0 0 

V 0 0 0 0 0 0 

V 0 0 0 0 0 0 

V 0 0 0 0 0 0 

V 0 0 0 0 0 0 
- -  m 

@ © © @  

@ © @ ©  

Fig. 1. Indexing scheme for the ab plane used in the calculation for 
space groups 150, 152, 154, 157, 159, 189 and 190. Dotted discs 
indicate complex structure amplitudes. For space groups 160 
and 161, the inner beams are relabelled (1,1) (2,T) (1,2) (I-,T) 
(~,1) and (T,2). For space groups 215, 217, 218 and 220, these 
beams are relabelled (01]) (10T) (110) (0T1) (T01) and (T10). For 
space groups 216 and 219, these beams are relabelled (022) (202) 
(220) (022) (202) and (220), with consistent relabelling of the 
outer beams. 

S 

0 

0 

M2= 0 

0 

0 

0 
m 

S 

0 

0 

-= 0 

0 

0 

0 

m 

0 0 0 0 0 0 

( V VI* II2 Vl V 

V ( V V1 V2 V1* 

VI V ( V Vl* 112 

V2 V1* V ( V V1 

VI* V2 V1 V ( V 

V Vl 1/'2 VI* V ( 

0 0 0 0 0 0 

M 3  

with S=  ( + 2 V +  V2+(V1 + V~*). The eigenvalues of 
m~ are (-S/2)+_[(S/2)2+6V2] m, O, O, O, O, O. 

In the centrosymmetric case, M3 is a circulant that 
can be diagonalized by the matrix F with entries 
given by au=  6 -1/2 to(i-I)q-l) (Appendix I), where 
the to are the sixth roots of unity. In the present case, 
M3 is not a circulant but the sum of each row and 
each column of M3 is equal to S, so that )143 belongs 
to the algebra Ml, 2 (Davis, 1979). The centre of this 
algebra is a matrix, J, with every element equal to 
unity. This matrix, and hence M3, is reduced to block 
form by the matrix F. The off-diagonal terms of the 
resultant block-form matrix depend only on the 
imaginary part of the structure amplitude V~. The 
resulting block form is readily diagonalized, so that 
if one writes V1 =-a+ ib, the eigenvalues of )142 are 
( + 2 V +  Vz+2a, ( + 2 V + V z + 2 a ,  ( - 2 V - V 2 + 2 a ,  
( ( - a ) + _ [ ( V -  V2) 2 + 3bZ] vz, ( ( - a ) + _ [ ( V -  V2) 2 + 
3b2] 1/z. 

Since [M~,M2]=0, the eigenvalues of Mo are the 
sum of the eigenvalues of M1 and )142, the order of 
addition being determined by the requirement that 
(IIM~,I0)/V= aN + aN-1. 

In this way, the eigenvalues for Mo are found to be 

A~ =k( (+  2V+ V2 + 2a) + []((+ 2V+ Vz + 2a) z +6VZ] 1/2 

- (S/2) + [(S/2) 2 + 6 V211/2 

=--61/2Vol /a 
+ 

A2 = ½((+ 2V+ V2 + 2a ) -  [~((+ 2V+ I"2 + 2a) z +6VZ] 1/2 

=(S/2)-[(S/2)  2 + 6VZ] 'n 

- -  6 1 / 2 V o l _ / O l  + 

A3 = ( ( -  a) + [(V - V2) 2 + 3b2] ~/2, 
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A4= ( ( -  a ) -  [ ( V -  1/'2) 2 + 3b2] 1/2, 

As= ( - 2 V  - V2+2a, 

A6 = ( s t -  a ) -  [ (V - V2) 2 -~- 3b2] 1/2, 

A7 = ( ~ ' -  a) + [ ( V -  V2) 2 + 3b2] 1/2. 

4. Determination of  the eigenvectors 

In order to facilitate comparison with the centrosym- 
metric case, we extend the notation of Fukuhara 
(1966) and define a - ( ( + 2 V +  V2+2a)/2V) and a± 
- {(1/12)[1 +_a/(a 2+6)1/2]} 1/2. The eigenvectors are 
then found to be (Appendix II) 

-61/2a_ - 61/2a + 0 0 

a+ F_ 6-~/z 

O~+ /"+(/)4 6- I/2(/)3 

~+ /"_o9 2 6-1/2 

a+ F+ 6-~/2w 3 

a + F_ (04 6-  z/2 

a + F+ w2 6-1/2(O3 

where 

0 0 0 

a_ F_ F+ F+ 

a_ F+w 5 F_w 2 F_(0 

a -  F_(0 4 F+(0 4 F+(0 2 , 

a_ F+w 3 F_ F_w 3 

a_ F_002 F+w 2 F+w 4 

a _  I '+W F _ w  4 1"_o  5 

/-'__. = 6 -1 /2 (2 -  I/2T+ ± 2 -1 /2T_) ,  7'__. = [1 -- 
y('~ + 1)-1/2] '/2 and y = ( V -  V2)/(31/2b). 

The two-beam nature of the solution derives 
directly from the form of the eigenvalues and 
eigenvectors since (g]U) = Y~j(J~o]O)(g~)exp (i,,l t )  
(Fujimoto, 1959). If ( i s  replaced with rr(  and V with 
O'Vloo, then the explicit two-beam solution is given 
by 

( l i e ) -  krV exp [i(S/2)z] 
sin[(S/2) 2 + (6'/2crV)211/2z 

× 
[(S/2) 2 + (61/20 . V)2] '/2 

f 
(0 U) = exp [i(S/2)z]] cos [(S/2) 2 + (61/2o V)211/2z 

. . . . . .  sin [(S/2) 2 + (61/2~rV)2]'/2z ] 
- -  I~/Z) 2 1/2 2 ,/2 ~ ' [(S/2) +(6 ~rV) ] 

where S=  2r r (+  2~rV+ cr V2 + 2~ra. 

5. Discussion of  the results 

The condition (11MZ[0)/Vloo = aN+ aN+ 1 derives from 
the requirement that N - 2  of the projectors should 
be zero; explicit calculation (§ 4) showed that, indeed, 
J~Po = 0 for j = 3, 4, 5, 6, 7. The reduction is therefore 
not due to confluence, although confluence is 
present. A comparison can be made with the reduc- 
tion of the three-beam centrosymmetric case, where 
straight-line loci in ( make J~oo zero. Confluence in 
this case arises only at the intersection of the loci, 
namely the Gjannes point (Moodie, 1979). 

The two-beam wave function is seen to be 
independent of b, the imaginary part of Vl,o; this 
might have been anticipated from the structure of 
M0, which allows decomposition into two commut- 
ing matrices, one of which is independent of b and 
possesses only two nonzero eigenvalues. 

It is shown in § 6 that, for specific orientations, 
reduction to two-beam form can in fact be obtained 
in 15 noncentrosymmetric space groups. In this 
category are the [111] projections of certain noncen- 
trosymmetric cubic space groups. When b is put 
equal to zero, one of these reduces to the case 
considered by Blume (1966); his solution is then 
identical with that given here. 

The approximately reducible case of a zone-axis 
convergent-beam diffraction pattern can be exam- 
ined by applying Zassenhaus's theorem (as quoted 
by Magnus, 1954) to Sturkey's (1972) solution for 
fast electron scattering without upper-layer-line 
interaction. This procedure is described by Anstis, 
Lynch, Moodie & O'Keefe (1973) and leads to 

exp (iMz) 

= exp (iMoz) exp [ iA(()z] exp [ - ~( Mo,A)(iZ) 2 ] . . . .  

If the convergence of the incident beam is chosen so 
that the orders of diffraction partly overlap, then the 
intensities in the overlapped regions will depend on 
the coherence of the incident wave. 

6. Application to other space groups 

For 15 distinct non-centrosymmetric trigonal, 
hexagonal and cubic space groups, there exist two- 
dimensional projections along appropriate directions 
that have symmetry p31m; these are the [001] projec- 
tions of trigonal space groups 150, 152, 154, 157, 
159, 160 and 161 and hexagonal space groups 189 
and 190 and the [111] projections of the cubic space 
groups 215, 216, 217, 218, 219 and 220. For these 
specific projections of the 15 space groups, seven- 
beam Niehrs reductions to an equivalent two-beam 
set are enumerated. 

The explicit expressions for the two-beam case for 
specific projections of the other space groups can be 
obtained by a relabelling of the expressions derived 
in § 4 for space group 152. In this section, we demon- 
strate how this relabelling is achieved. 

Group I: trigonal space groups 150, 152, 154, 157, 
159, 160 and 161 

Of the 25 trigonal space groups, eight in crystal 
classes 3 and 3m are centrosymmetric. The 17 non- 
centrosymmetric space groups are divided con- 
veniently into three groups according to whether the 
special projection along [001] has two-dimensional 
space-group symmetry p3 lm, p3ml or p3. Calcula- 
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tion of the two-dimensional structure factors for 
each of the three groups shows that only for the 
group with p3 l m symmetry does the set of six beams 
(0,1) (1,0) (1,]-) (0,1) (1,0) and (]-,1) together with the 
central beam undergo Niehrs reduction to an equiva- 
lent two-beam set for radiation incident along the z 
axis and neglected higher-layer-line effects. 

-(a) For the group of space groups 150, 152, 154, 
157 and 159, the coordinates of a [001] projection of 
their equivalent general position are the same, 
namely x,y; y , x - y ;  y - x ,~ ;  y,x; ~ , y -  x; x - y , y .  For 
this set of coordinates with projection symmetry 
p31m, the six beams (0,1) (1,0) (1,1) (0,1) (1,0) and 
(1,1) form an equivalent two-beam set with the cen- 
tral beam. 

(b) The space groups 160 and 161 also have pro- 
jection symmetry p31m along [001]. The atom coor- 
dinates of their equivalent 18-fold general positions 
projected along [001] are given by applying the 
rhombohedral lattice translations to the coordinates 
x,y; y , x -  y; y -  x,x; y,~; x , x -  y; y -  x,y. The 
rhombohedral lattice centring condition results in A 
= B = 0  for beams with - h + k ~ 3 n  for the [001] 
projection. For these space groups, the set of beams 
(1,1) (2,7) (1,2) (]-,1) (2,1) and (1,2) form a seven- 
beam set with the central beam (Table 2) that under- 
goes an equivalent two-beam reduction of the same 
form as the five trigonal space groups above but with 
relabelling of V, V~ and V2. 

Group II: hexagonal space groups 189 and 190 

Of the 27 hexagonal space groups, six are centro- 
symmetric, namely those with point-group symmetry 
(PGS) either 6/m (two space groups) or 6/mmm (four 
space groups). The 21 noncentrosymmetric space 
groups comprise those with PGS either 6 (seven 
space groups), 622 (six space groups), 6mm (four 
space groups), 6m2 (two space groups) or 62m (two 
space groups). Of these 21 noncentrosymmetric space 
groups, those with PGS 6, 622 and 6ram have centred 
projections along [001]. The only hexagonal space 
groups that have noncentrosymmetric projections 
along [001]__are 187 (P6m2), 188 (P6c2), 189 (P62m) 
and 190 (P62c). The hexagonal space groups 189 and 
190 have the projection symmetry p31m along [001]. 
The atom coordinates of the general positions for 
this projection are x,y; y , x - y ;  y -x ,~ ;  y,x; -~,y-x; 
x - y , y ;  with each point doubly occupied. These 
coordinates are identical with those of the initial five 
trigonal space groups considered above and so the 
same two-beam reduction results. 

Group III: cubic space groups 215, 216, 217, 218, 219 
and 220 

There are 19 noncentrosymmetric cubic space 
groups that have projections along [111] of two- 

Table 2. Tabulation of values of A = Y.cos 27r(hx + ky) 
and B = Y.sin 2rc(hx + ky) 

[001]  p r o j e c t i o n  o f  s p a c e  g r o u p s  150,  152,  154,  157 a n d  159 

F o r  010 beam,  A=2cos27rx+2cos2~ry+2cos2rr(x-y), B = 0  
F o r  020 beam,  A=2cos4rrx+2cos4rry+2cos4rr(x-y), B = 0  
F o r  110 beam,  A = 2cos 2rr(x  + y) + 2cos 2rr(x  - 2y) + 2cos 2 ~ ' 0 ' -  2x) 

B = 2sin 2~r(x + y) + 2sin 2~r(x - 2y) + 2sin 2~r(y - 2x) 

[001]  p r o j e c t i o n  o f  s p a c e  g r o u p s  160 a n d  161 

F o r  110 beam,  A = 6cos 2r r (x  + y) + 6cos 2 ~ r ( x -  2y) + 6cos 2 ~ r O ' -  2x), 
B = 0  

F o r  220 beam,  A = 6cos 4r r (x  + y) + 6cos 4 ~ r ( x -  2y) + 6cos 4 1 r ( y -  2x), 
B = 0  

F o r  300 beam,  A = 6cos 6~rx + 6cos 6 t ry  + 6cos 6 ~ - ( x -  y) 
B = 6sin 6~ 'x - 6sin 6~-y + 6sin 6~-(x - y) 

[001]  p r o j e c t i o n  o f  s p a c e  g r o u p s  189 a n d  190 

F o r  010 beam,  A=4cos2rrx+4cos2zry+4cos2rr(x-y), B = 0  
F o r  020 beam,  A = 4cos 4~rx + 4cos 4~ry + 4cos 4r r (x  - y), B = 0 
F o r  110 beam,  A=4cos2zr(x+y)+4cos2rr(x-2y)+4eos2~r(y-2x) 

B = 4sin 2~'(x + y) + 4sin 27r(x - 2y) + 4sin 2~r(y - 2x) 

[001]  p r o j e c t i o n  o f  s p a c e  g r o u p s  149,  151,  153,  156  a n d  158 

F o r  0 I0 beam,  A = 2cos 2rrx  + 2cos 2 t ry  + 2cos 2 ~ r ( x -  y) 
B = - 2sin 2~rx + 2sin 2 t ry  + 2sin 27r(x - y) 

F o r  100 beam,  A =2cos2rrx+2cos2rry+2cos2rr(x-y) 
B = 2sin 2~ 'x - 2sin 2 t ry  - 2sin 2rr(x  - y) 

[111]  p r o j e c t i o n  o f  s p a c e  g r o u p s  2 1 5 ,  2 1 7 ,  2 1 8  a n d  2 2 0  

F o r  0 IT beam,  A = 8cos 2 ~ r ( y -  z) + 8cos 2rr(x  - y) + 8cos 2~-(z - x), 
B = 0  

F o r  02~ beam,  A = 8 c o s 4 ~ - ( y -  z) + 8 c o s 4 ~ - ( x - y )  + 8 c o s 4 ~ r ( z -  x), 
B = 0  

F o r  11~ beam,  A = 2cos 2~r(x + y - 2z) + 2cos 2 ~ - ( x -  y + 2z) + 2cos2~" 
× (y - x + 2z) + 2cos 27r( - x -  y -  2z) + 2cos 2rr(z 
+ x -  2y) + 2cos 2 7 r ( z -  x + 2y) + 2cos 2 ~ r ( x -  z + 2y) 
+ 2cos 27r( - x - z - 2y) + 2cos 2~'(y + z - 2x) 
+ 2cos 2~-(y - z + 2x) + 2cos 27r(z - y + 2x) 
+ 2cos 2rr( - y -  z - 2x) 

B = 2sin 2~-(x + y - 2z) + 2sin 2 ~ - ( x -  y + 2z) + 2sin27r 
x 0 '  - x + 2z) + 2sin 27r( - x - y - 2z) + 2sin 2 ~'(z + x 
- 2y) + 2sin 2~'(z - x + 2y) + 2sin 2 ~ r ( x -  z + 2y) 
+ 2sin 21r( - x - z - 2y) + 2sin 21r(y + z - 2x) 
+ 2sin 2 r r ( y -  z + 2x) + 2sin 2 ~ - ( z -  y + 2x) 
+ 2sin 2~r( - y - z - 2x) 

[111]  p r o j e c t i o n  o f  s p a c e  g r o u p s  2 1 6  a n d  2 1 9  

F o r  02~ beam,  A = 8 c o s 4 ~ - ( y -  z) + 8cos4~r(x - y )  + 8cos4~-(z - x), 
B = 0  

F o r  042[ beam,  A = 8cos 8 1 r ( y -  z) + 8cos 8 7 r ( x -  y) + 8cos 8 1 r ( z -  x), 
B = 0  

F o r  222[ beam,  A =2cos4rr(x+y-2z)+2cos4rr(x-y+2z)+2cos4rr 
x (y - x + 2z) + 2cos 4rr( - x - y  - 2z) + 2cos 4~'(z 
+ x - 2y) + 2cos 47r(z - x + 2y) + 2cos 4 r r ( x -  z + 2y) 
+ 2cos 4~r( - x -  z - 2y) + 2cos 4~-(y + z - 2x) 
+ 2cos 4zr(y - z + 2x) + 2cos 4 ~ r ( z -  y + 2x) 
+ 2cos 4~'(  - y - z - 2x) 

B = 2sin 4r r (x  + y - 2z) + 2sin 47r(x - y + 2z) + 2sin4~r 
x 0 ' -  x + 2z) + 2sin 4 ~ ' ( -  x - y -  2z) + 2sin 4~'(z + x 
- 2y) + 2sin 4rr(z - x + 2y) + 2sin 4 ~ ' ( x -  z + 2y) 
+ 2sin 4~-( - x - z - 2y) + 2sin 4rr(y  + z - 2x) 
+ 2sin 4~-(y - z + 2x) + 2sin 47r(z - y + 2x) 
+ 2sin 4 7 r ( -  y - z - 2x) 

dimensional space-group symmetry p3, p3ml or 
p31m. Those with p31m are the six space groups 215, 
216, 217, 218, 219 and 220 (all of PGS 43m). For 
space groups 215, 217, 218 and 220, the six beams 
(011) (10T) (110) (011) (101) and (110) form with the 
central beam a seven-beam set that reduces to an 
equivalent two-beam set that has the same form as 
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found for the trigonal and hexagonal space groups 
already considered (Table 2) but with relabelling of 
V, Vl and V2. 

For space groups 216 and 219, the face-centring 
condition h+k, k + l = 2 n  means the six beams 
closest to the central beam in the [ 111 ] projection are 
the six beams (022) (202) (220) (022) (202) and (220) 
and these beams give an equivalent two-beam reduc- 
tion with the central beam (Table 2). The form is the 
same as the previous cases but with relabelling of V, 
Vl and I/'2. 

We note at this point that the values of A and B 
given in Table 2 for crystals of space group 216 are 
based on an assumed general 96-fold site symmetry 
1. There exist materials of space group 216 in which 
the only occupied sites are the 4(a) and 4(b) sites of 
point-group symmetry 43m, for example the 
sphalerite form of ZnS. Vt is real for the 422 beam of 
this substance. There is thus still a two-beam reduc- 
tion but a coherent convergent-beam diffraction pat- 
tern will not show trigonality in the overlap of the 
inner 202 beams. 

In many substances, only a portion of the atoms in 
the asymmetric unit of the crystal cell are in general 
positions. In a-quartz, the Si atoms are in special 
positions and the scattering from them does not 
contribute to the asymmetry of a [001] projection; 
hence, the coherent convergent-beam effects due to 
asymmetry in this compound are correspondingly 
delicate. 

Noncentrosymmetric trigonal, hexagonal and 
cubic space groups that have projection symmetry 
p3ml or p3 down appropriate directions do not lead 
to two-beam form in the seven-beam approximation. 
To illustrate this, consider the [001] projection of 
space groups 149, 151, 153, 156 and 158, which has 
symmetry p3ml. The atom coordinates of the 
equivalent general positions are x,y; y , x - y ;  y - x , x ;  
y,x; x , x - y ;  y - x , y .  As seen in Table 2, V~oo is 
complex and so does not meet the necessary condi- 
tion that (glM210)/Vg should be real for a two-beam 
reduction (Moodie & Fehlmann, 1993). 

As an aside, we note that projections along [001] 
of noncentrosymmetric tetragonal space groups leads 
to five-beam Niehrs reductions to equivalent two- 
beam form. However, [001] projections of tetragonal 
space groups are all centred. 

We compare simulations, using Bloch-wave for- 
malism, of convergent-beam patterns for [001] pro- 
jections of two noncentrosymmetric space groups, 
namely 152 (a-quartz, SiO2) and 188 (benitoite, 
BaTi[Si309]). The former, satisfying the squared 
matrix condition, should and in fact does reduce 
(Fig. 2). This has also been observed experimentally 
(Moodie & Fehlmann, 1993). The latter does not 
satisfy the squared-matrix condition and so should 
not and in fact does not reduce (Fig. 2). Indeed, 

there is a strong breakdown of Friedel's law in the 
inner beams. 

The computations were performed on a Sun com- 
puter using programs of Stadelmann (1987). 

7. Concluding remarks 

We have shown that the absence of a centre of 
symmetry does not preclude reduction of seven-beam 
interactions to two-beam form in specific space 
groups. The solution obtained can constitute the 
starting point for the analysis of various critical- 
voltage effects and of image contrast in the electron 

Fig. 2. Calculated convergent-beam electron diffraction patterns 
of 30 nm-thick crystals viewed down [001] of (top) a-quartz 
(SiO2) and (bottom) benitoite, BaTi[Si309]. In each case, 55 
beams were used in the Bloch-wave calculation. 
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microscope. As will be shown in subsequent publica- 
tions, the results also influence the analysis of certain 
symmetry-induced effects in convergent-beam 
electron-diffraction patterns. 

APPENDIX I 
Eigenvalues 

An nth-order circulant is diagonalized by the Fourier 
matrices, F, which are unitary and are the nth matrix 
roots of unity, i.e. F" = E, or aij = n-  1/2 03(,- 1)0-1). In 
the present case, M3 is not a circulant but rather a 
member of the 'Magic' algebra MI,2. This algebra is 
the centralizer of the matrix J that has every element 
unity. The eigenvalues of this matrix are n, 0, ..., 0, 
so that F reduces M3 to a block-diagonal form 
(Davis, 1979). Hence, 

F - I M 3 F =  

where 

-Dll 0 0 0 0 

0 022 0 0 025 

0 0 D33 0 0 

0 0 0 D44 0 

0 D52 0 0 D55 

0 0 063 0 0 

Dll = S =  ( + 2 V +  V2+2a, 

m 
0 

0 

D36 
-- B, 

0 

0 

966 m 

D22 - D66 = 
(+ V -  Vz-  a, D33 = D55 = ( -  V+ Vz- a, 044 = 
( - 2 V - V 2 + 2 a ,  036 = 063 = --31/2 b and D25 = D52 
= 31/2 b. 

The characteristic equation for B can then be 
solved, giving .the eigenvalues ( +  2V+ V2 + 2a, 
( - 2 V -  V2 + 2a,(f -a)+_[(V- V2) 2 + 3b211/2,(d-a)+_ 
[ ( V -  V2) 2 + 3b2] I/2. The  eigenvalues for Mo can then 
be written down, the order of addition being 
conveniently determined by the requirement 
(1 m~lo) /v-  AN+ AN-~. 

APPENDIX II 
Eigenvectors 

The eigenvectors of M~ are conveniently expressed in 
terms of a±-{(1/12)[l__.a/(a2+6)l/2]} 1/2, where a 
- ( ( +  2V+ V2 + 2a)/(2V) = S/(2V). Similarly, the 
first eigenvalue ,~ = (8/2) + [(S/2) 2 + 6 V2] 1/2 - 
61/2Va+/a_. The eigenvectors of M3 can be calcu- 
lated by noting that the block-diagonal matrix B is 

diagonalized by 

-1  

0 

0 Q= 
0 

0 

0 

0 0 0 0 

g+ 0 0 g_ 

0 g+ 0 0 

0 0 1 0 

- g _  0 0 g+ 

0 - g _  0 0 

0 

0 

g -  

O 

0 

g+ 

with g+. = y±/21/2, y± - [ l  ++. y(y2+ l)-l/211/2 and 
y = ( V -  V2)/(31/2b), so that 

g± = 2-1/2(1 _+ {(V- Vz)/[(V- V2)2+ 3b211n}) I/2. 

Thus, for the centrosymmetric case with b=0,  
g + = l  and g _ = 0 .  Since Q - I B Q = D  (say), then 
Q-1F-1M3FQ = (FQ)- 1M3(FQ) = D and 

m 

1 F_ F_ 6-1/2 F+ F+ 

1 F +  o3 5 F +  03 4 6- 1/2033 F _  032 F _  03 

1 F_03 4 F_03 2 6 -1/2 F+03 4 F+03 2 

FQ = 1 F+ (.D 3 F +  6 - 1/2(.o3 F _  F _  033 , 

1 F_ 032 F _  034 6-1/2 F+ 032 F+ 034 

1 F+ 03 F+ 032 6-1/2033 F_ 034 F _  035 

with F± - 6-1/2(2-1/2y+ _ 2-1/2y_). 
Since M1 and ME commute, the nonzero eigen- 

values of MI are also eigenvalues for Mo and so the 
complete set is as tabulated in the text. 
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